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ABSTRACT “lip-synch” errors. It operates as follows: each actor involved in
In this paper, we present a robust system for the temporal aligr@ particular scene attends a special dubbing session, during which
ment of 2 renditions of the same speech utterance. The systef{i€ appropriate pictures are projected onto a screen in front of him,
operates in 2 steps: during analysis, the timing relationships bevhile replaying the original recordings over headphones. The ac-
tween the speech segments of the utterance that serves as a tim{R then revoices the original dialogues, ensuring not only that his
reference and the corresponding speech segments in the replag@Placement speech precisely synchronizes with the on-screen lip
ment utterance are measured by means of a dedicated dynamic tiff@vements, but also that the nuances of his performance match the
warping algorithm. The obtained warping paths are then processe¥iginal. Post-synchronizing dialogue is generally considered very
and used to synthesize a high-quality speech utterance that is tim@tficult because most actors have a lot of difficulties to maintain
aligned with the reference. Subjective audio-visual listening test§ynchrony while speaking. In addition, its repetitive nature makes it
performed within the context of a difficult Automatic Dialogue Re- /S0 very dull and time-consuming as the actor often needs to rede-
placement task demonstrated that the proposed system achievelVgr his lines until director and dialogue editor have compromised
significant improvement compared to the industry-standard benctetween the desired level of performance and timing. In the past,
mark, both in terms of achieved lip-synchronization accuracy ag few systems have been developed that allow automatically time-

well as in overall sound quality of the synthesized utterances. aligning the studio dialogues with the original recordings. These
systems not only save time and money, they also release the actors
1. INTRODUCTION from their technical preoccupation of speaking in synchrony with a

picture soundtrack and thus allow them to fully concentrate on their
A system for the temporal alignment of speech utterances modifigsrimary task of acting and producing great performances.
the timing structure of a first utterance (replacement, dub) in such a  This paper is organized as follows: section 2 reviews the previ-
way as to synchronize it with a second utterance (reference, guidegus work on automatic temporal alignment and the observed short-
which has the same textual content and has been produced by tbemings in the approaches followed. In section 3 we motivate
same or by a different speaker. In general, such a system achievgfd discuss the proposed “split time warping” technique, which
the synchronization in 2 steps. First, the time correspondence ige evaluate in section 4 by comparing its performance against the
measured between the matching phonemes in both utterances. Tihgustry-standard benchmark. Also are discussed the employed

resulting timing relationship describes the varying amounts of timesvaluation methodology and database. Finally, in section 5, we dis-
stretching and compression necessary to bring the time axis of thguss the results and conclude the paper.
replacement into optimal alignment with that of the reference. In a

second step, the relative timing differences between the utterances 2. RELATED WORK
are cancelled out by warping the time axis of the replacement in .
accordance with the measured timing relationship. Over the last 4 decades, a considerable amount of research nas bee

Although we can enumerate many possible uses for time a"gncar_ried outon the developr_nent of techniques fo_r_the automatic time
ment systems, our special attention in this paper goes to Automat[€distration of corresponding events in 2 renditions of a same ut-
Dialogue Replacement (ADR), a well-known post-production techt€rance (see for example [1] and relat’ed references therein). On the
nique in the audio-for-video industries. During the production ofcontrary and to the best of the authors’ knowledge, very little efforts
film soundtracks, dialogues are frequently re-recorded in a studiBave been made when it comes down to applying the registered tim-
and used to replace the original ones recorded on the set. Very dfd relationships for speech synthesis purposes. N
ten, this is necessary because of the poor quality of the original The first attempts were made in the eighties, primarily in
recordings that might for example be corrupted by some kind ofh® early original work of Bloom [2, 3], who developed a digi-
background noise that is difficult to control. As another example i@l audio signal processor named WordF:it for the automatic post-
is sometimes argued that an actor can produce a markedly improvéé(nchronlgatlon of revoiced studio recordings with the correspond-
spoken performance in a studio in comparison to the one produced recordings made on the film set. Although this system was de-
on the set, which is usually very chaotic and makes it difficult toSigned to work with a variety of audio signals and not only with
capture the true mood of a scene. In either case, straightforwa@Peech, it was reported that no single set of parameters could be
replacement of the original recordings by the studio dialogues infound for which the system or its successor, VocALign PRO, would
troduces a lot of mismatches between the lip and mouth movemenY¥ork under all circumstances [4, 5]. One very important and prac-
in the picture and the actual timing and duration of the individualtical problem that arises in time-aligning sentence long speech ut-
phonemes in the replacement speech. ADR is the most widespreigances is the presence of long inter-word gaps, possibly between

technique used for the (indirect) compensation of such audio-visudl!fferent words and/or of different durations, in one or both utter-
ances. During the development of WordFit, Bloom implemented a

This research was sponsored in part by the IWOIB (Institeubevor- ~ modified version of the ZIP algorithm [6]. Although this algorithm
dering van het Wetenschappelijk Onderzoek en de InnovatieBrussel)  could solve part of the problems as explained in [2], it is gener-
with a grant in the Spin-Off In Brussels program for the pebJeOS - studie  ally not capable of correctly inserting or rejecting pauses into or
ter Exploitatie van Onderzoeksresultaten op het viak van&modificatie.  from the replacement track. Another disadvantage of ZIP is that it
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belongs just like UELM [7] and MATCH [8] to a class of dynamic
time warping (DTW) algorithms that estimate the globally optimum
path by tracking a locally optimum path using a local search win-
dow. Although the window steering and partial trace back proce-
dures ensure the amount of computation and storage can be ke
to modest levels, such algorithms are susceptible to tracking fail:
ures (see for example [9]), especially when large timing differences
occur in the sentence pairs.

Later on, Verhelst and Borger studied the alignment of speect
utterances in the context of prosody transplantation [10]. Such sys
tems can be used to interchange prosodic features, such as timin
pitch and timbre among different renditions of a same utterance
It was concluded that in order to make prosodic transplantation:
widely applicable, further work had to be done to improve their ro-
bustness: informal experiments revealed that, with utterance pair
that are not acoustically and phonetically sufficiently close to eack
other, local distortions could be regularly perceived, even when only
timing is transplanted [11]. Very often, these distortions could be
traced to some event in the timing relationship, but could not al-
ways be considered to be due to an error in this relationship, nor t
the system that was used to perform the time scaling. In genera
it was concluded that the perceived distortions could be attributec
to 3 different types of acoustic-phonetic differences, which are de-
scribed in detail in [12]. In [11], Verhelst built a basic system for
the automatic post-synchronization of speech utterances based «
standard DTW and WSOLA. The system proved to be quite robus
to significant timing differences such as those that can for example | : ; «10°
be observed between speech utterances in which silent pauses oct a ’ ﬂ a2, ‘ ﬂ‘ 0‘[3 ‘ ﬁ 1'4
between different words, but it was also noted that the time-scale: ! ; 2 :
results very often suffered from many audible distortions. The ma- sample index reference
jor part of these distortions could be readily identified with the short
abrupt transitions in the time warping path and it was shown thag; . ; o ; -
they could be straightforwardly smoothed out with the help of atfzr:gL;irgeulr.eél)lustratlon of split time warpingf¢ = 16kHz throughout
graphical warping path editor that was developed for that purpose '

[12]. Although it was concluded that such an editor could form anat occur between the corresponding speech seghintbe 2
effective tool for the semi-automatic correction of lip-synch errors,yaveforms. Furthermore, it is well-known that the details of a DTW
no objective criterion was formulated that enabled the conssterBath can be quite arbitrary during the alignment of non-speech seg-
and automatic production of high-quality natural sounding results. ments and can therefore give rise to tracking errors [6]. Hence, it
Finally, in [13], Resch and Kleijn adopt the approach of Ver- seems reasonable to first segment the 2 waveforms into intervals
helst, but they classify the reference and replacement tracks intéontaining speech and intervals containing non-speech before ap-
speech and silence segments, the information of which is used {gying a specific DTW algorithm. Assuming both waveforms have
bias the warping path towards preferred directions in different situaheen precisely segmented (more details on the segmentation are
tions. The major problem with this approach is that it applies the DRyjven in section 4.3 and [15]), the main idea behind the proposed
principle to a situation that does not justify its use [14]. Therefore method is that for each of tiereference speech segments delimited
as is the case _Wlt_h_ ZIP, th_e a_Ilgnment can get s_tucl_< in local Minpy time markersa,, B;) with 1 < r <R, there must correspond a re-
ima, causing significant misalignments. Such misalignments wergjacement speech segmént_1,A). Since in general the number
also verified from extensive experiments using our implementatiomnd/or location of the non-speech segments in the 2 waveforms is
of the algorithm, and in many cases the results were found to bgifferent, automatic identification of the matching speech segments
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sample index reduced replacement

inferior to those of VocALign PRO. is not straightforward. Experiments in [5] demonstrated that the
corresponding pairs can be identified by splitting the replacement
3. SPLIT DYNAMIC TIME WARPING speech waveform in which all non-speech segments were removed

Although the several algorithms proposed in literature have beef & Preprocessing step (‘reduced replacement’) at time instants

thoughtfully motivated, they all have to contend with specific draw- Cpaq d
backs in different situations, which stem from a somewhat contra- A — jﬁr g(x)T(x)dx
dictory requirement that is imposed on the warping function cur- e jgm g(x)dx

vature: at some parts this function should allow very steep or flat

gradients to account for the possible different location and/or durgghere), = 0 andAg equals the duration of the reduced replacement.
tion of pauses, while at other positions it should be smooth enougfy, this expressionr(x) represents the linearly interpolated DTW
to avoid unnatural sounding artefacts in the time-aligned results. I§Zth between the reference (along the x-axis) and the reduced re-

r=1...R-1 (1)

order to meet this dual requirement in a convenient manner, the presiacement using the symmetric Sakoe-Chiba local constraint (with
posed system uses a DTW-based timing analysis approach, whiglro siope constraint condition) [16]. Furthermayg) is a Gaus-
splits up the calculation of the final warping path in 2 steps (the degjgp, weighting function symmetrically positioned oV, ar 1]

tails of the WSOLA-based synthesis are identical to those describafat is used to bias the split towards the speech segment boundaries.
in [11] and will therefore not be discussed in this paper).

Iwithout loss of generality, we defined a “speech segment”iwithe
context of ADR as each sequence of phonemes that is not iptedriby a
The first step in the timing analysis is motivated by the conclusiorbreathing pause, silence or background noise (“non-spsesgrhent”).
that the main concern for the greater part of time alignment applica- 2Preferably, also the non-speech segments in the beginnihgtaie
tions, and for ADR in particular, is to know the temporal variationsend of the reference are removed in a preprocessing step.

3.1 Identification of corresponding speech segments
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Figure 1 illustrates the split time warping concept on a replace- correction
ment and reference waveform with 1 and 2 non-speech segments, o J
respectively. Whereas the lengths of the horizontal stretches ap- 2 T,
proximately cover the durations of the non-speech segments in the g
reference, their position along the y-axis indicates where to split the g M
reduced replacement such that the corresponding speech segments o ~ i . GTS™
can be identified. = W\{ [ \/
T
3.2 Smoothing and postprocessing of the sub warping paths 0.5 \/ \ after :
In a second step, we recalculate the timing relationship for each pair correction
of matching speech segments using the same DTW algorithm as in N R BRI T
the previous step. Since the resulting “sub warping patfig) can 2.8  sampleindex reference 3.8

be expected to be reasonably close to the diagonal linear path, re-

compution was sped up using a global constraint in the form of a

small Sakoe-Chiba band [16]. In addition, an Itakura parallelogram

[c107r]regte gﬁggn?gr:l[n;iﬁef zlgnepeeéﬁ/ggrc]ijpvgﬁhagggﬁ?etnc; ggﬁﬂgeatr?ei_constrained. One possible way is_ to constrair) the first dgrivative of

Smoothing: as mentioned in section 2, straightforward use ofthe smoothed sub warping paths in the following manner:

the sub warping paths for overlap-and-add time-scale modification _

of the replacement speech would inevitably lead to distorted re- T GTS! < dr (0

sults, mainly due to the short abrupt portions that correspond to r= o —  dx

the unrealistic time-scaling factors of 0 ® As we suggested in

[11], we smoothed the sub warping paths using different techniquéa this expressionGT S represents the r-th global time scaling fac-

such as piece-wise linear smoothing, DTW variants with especiallyor, which is defined as the ratio of durations of respectively the r-th

crafted local constraints (as in [18]), and more generative nontlineaeference and replacement speech segments that are being aligned,

smoothing techniques such as LOWESS [19]. From the techniquesnda, is an application-dependent constant in the range. 11.5.

studied, LOWESS smoothing using a zero order degree polynomidurthermore, threshold valu@s, andT,, are defined as the lower

proved both very effective as well as computationally efficient. Inand upper bound of inequality 4, respectively. From a physical point

that case, the r-th smoothed sub warping @atk) is obtained from  of view, expression 4 implies that the instantaneous speech rate

the centrally weighted moving average represented by expression & the replacement speech after time-scale modifica®(()) is
constrained by that before time-scale modificati®R(t)) in ac-

x+L

— cordance with
LU oTd g @)
JZL w(u)du

Figure 3: lllustration of the postprocessing stage1.5).

Sar'GTs_l:TZr 4)

f(x) =

Tir - SR/(t) < SK(t) < Tor - SR(t) (5)
Figure 2 illustrates the smoothing process in detail: for the calcula-
tion of the smoothed sub warping paths, we followed the traditionaFigure 3 illustrates the correction procedure that was applied to
LOWESS approach in using a tricube window achieve natural sounding results. The small bend in the smoothed
(sub warping) path in the upper panel of figure 3 would generate
313 an unnatural sounding speech deceleration followed by an unnatu-
w(x) = {1_ <M) } IX| <L (3) ral sounding speech acceleration. This is correctly reflected in the
L - lower panel by the sharp negative and positive peak in the function
that represents the first derivative of the smoothed path. Applying
in which the application-dependent window lengthlargely de-  a threshold yields a first estimate of the time intervals where this
fines the trade-off between achieved timing accuracy (or lip-syncliunction should be limited in range (small square wave). Merging
accuracy in the case of ADR) and perceived voice quality. of the corresponding adjacent time intervals eventually identifies the
Postprocessing: although the smoothing process constrains theportions in the smoothed path that require further processing (large
first and higher-order derivatives to more realistic values and leadsquare wave). Allowing each of these portions to be extended for-
to more smoothly sounding results, occasional peaks in these funesards and backwards in time, the applied correction procedure re-
tions can still be responsible for unnatural sounding speech rateplaces the smoothed warping path by the shortest possible straight
accelerations and/or decelerations, and should therefore be furthiéme, the slope of which satisfies expression (5).
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spontaneous speech revoiced speech
4. EVALUATION OF SYSTEM PERFORMANCE OD§] 03T 2 E0LG 7
4.1 Evaluation methodology SR [syll/s] 5.41+0.90 4.76+£0.92
The objective evaluation of the overall timing accuracy of a given NSR [1/s] 0.238+0.070 0.374+0.083
time alignment system is a difficult task, which is mainly due to the DS [ms] 15526 151+29
inherent subjectiveness that exists in identifying the corresponding DM [ms] 499+ 189 494+180
phoneme boundaries in 2 renditions of a same speech utterance [1]. Pt [MS] 1255+ 258 1193+ 205

In automatic phoneme alignment for example, evaluation is most
often reported in terms of what percentage of a set of automatically
generated phoneme boundaries are within a given time threshold pye 10 its proprietary nature, users only have limited control in
of a known set of manually generated boundaries (there is a gefe way the time-aligned results are produced with VocALign PRO.
eral consensus that the latter are the most accurate that can be ‘Piﬁ’st, one has to select a type of alignment mode (“basic” or “ad-
tained). At first glance, this strategy could be readily applied to outanced”), each one of which has 5 possible different settings that
problem, for example by manually labeling the time-aligned resultgonro| the internal parameters of the applied alignment algorithm.
and the corresponding reference samples and relating the 2 serigscontrast to the basic mode, which only allows time scaling ra-
of time markers to estimate the overall timing error. However, this;jos in the range 12...2, the advanced mode allows much larger
approach would only be acceptab]e if the difference between the gmounts of time compression and expansion to occur. To make a
sets of time markers can be considered greater than the differengenper choice among the 2 modes and their respective settings, the
between the individual sets of manually generated time markers arigser can resort to a manual, which describes for each combination
the unknown correct time markers, a condition which is usually Nothe amounts of time compression/expansion that can be provided,
met since our time-aligned results are generally well aligned withhe nature of the input waveforms for which it is applicable and the
the reference samples. Furthermore, with regard to the objectivgypected output sound quality [21]. For the alignment of our record-
?valuatlon of t,r,]e overall speech quality of the time-aligned resultq-_ngS’ we found that the “advanced” mode with the “high flexibility”
full-reference” evaluation methods such as PESQ are not approprietting produced far better results than the other combinations: it
ate in this situation since they apply a temporal alignment procedurgas therefore chosen as final setting for all alignments. In addition,
for comparison of the “signal under test” (time-scaled result) withthe alignment process captionallybe further controlled by target-

the undistorted (dub) signal [20]. Because objective evaluation fofq the alignment at specified pairs of “synch points” in the 2 wave-
time synchronization is difficult, we evaluated the proposed systengyyms. However, it must be remarked that such points are always
wnthln the context of ADR by means ofa subjectlve_ audio-visual I's'interpreted asuggestegboints, which the alignment algorithm will
tening test. Although the proprietary nature of the |_ndus_try-sta_ndargry to match and which can therefore be ignored completely. Al-
VocALign PRO (V4.0) hampers insight in the algorithmic details of tn5ugh we tried to improve the results for the “difficult” alignment
the alignment process (the output waveforms are the only informgsairs by manually identifying the corresponding speech/non-speech
tion available for evaluation), it was selected as a baseline for comyansitions in the 2 waveforms, in most of the cases these pairs of
parison, since it is world-wide considered the benchmark system fogchor points were ignored or gave rise to the error message “no
automatic time synchronization and ADR [21]. warping path could be fit through one or more of the waypoints”.

For the alignment of our recordings by means of the pro-
posed system, we first segmented the samples into speech and non-
With a view to the experiment in section 4.3, we recorded an audiospeech intervals. In the first instance, this was accomplished au-
visual corpus, comprising 80 different samples, produced by 2 malgomatically. However, because of the importance of an accurate
and 6 female native Dutch speakers. The data from this corpus wapeech/non-speech discrimination, we further manually inspected
extracted from 2 sets of recording sessions. In a first series, we inhe speech/non-speech transitions and, where necessary, abrrecte
vited each time 2 speakers for a 30 minute table talk. From eacthem in a very efficient interactive way by means of a GUI specifi-
of these conversations, 5 samples were extracted for each pers@ally designed for ADR [15]: at each time this tool allows to zoom
In doing so, care was taken the selected samples were sufficientiyto and slide through the waveforms, select and audition specific
long such that they would cover a wide range of speaking rates gsortions, and make corrections by dragging the speech/non-speech
well as pauses of different kinds and durations. In a second seéyoundaries to the left or the right. After segmentation, the data were

ries, the same speakers were asked to mimic the selected partsgbcessed according to the details described in section 3.
their conversations by revoicing the literally transcribed lines from

alarge screen at a pace they felt comfortable with. In contrast to th&4 Subjective audio-visual listening test

traditional approach in ADR, we did not require the speakers to deThe time-aligned samples obtained with the 2 synchronization sys-
liver performances with near-perfect lip-synch accuracy. Asra co tems were re-assembled with the corresponding video fragments
sequence, we can generally observe substantial timing differenc@®m the conversation sessions and subsequently randomly arranged
between the corresponding sample pairs, which therefore constind presented in an equal amount of triplets (A,B,C) and (A,C,B), in
tute a suitable test database to research the alignment capabilitighich A denotes an original video sample, and where B and C rep-
of the proposed algorithm and in particular its robustness againsksent this same fragment but with the audio replaced by the time-
the acoustic-phonetic differences described in [12]. For both theligned result obtained with the baseline and proposed system, re-
spontaneous and revoiced speech samples, table 1 shows the g@ectively. For each of the 40 triplets, we first asked 8 listeners to
erage overall durationdD), average speech and non-speech ratejiew fragment A and then rate both the perceived audio-visual lip-
(SRresp.NSR) and average duration of shoR$), medium PM)  synch accuracy as well as the overall sound quality (naturalness &
and long DL) non-speech segments. We remark that both clasintelligibility) of B and C by assigning scores to their opinions, ac-
sification as well as observed distribution of the shert200ms),  cording to the ITU-R 5-point degradation scale [23]. These scores
medium ¢ 200ms< 1s) and long % 1s) non-speech segments represent a number in the range 1 to 5, which provides a numerical
were in agreement with [22]. indication of the quality of the considered audio(-visual) feature.

4.3 Experiment 4.5 Results

Table 1: Major database statistics.

4.2 Database recordings

A complete set of 80 alignment runs was made by syn-Table 2 shows the arithmetic means evaluated from the opinion
chronizing all dubbed speech samples with the correspondscores for each and across all speakExd©S) (scores were first

ing spontaneously spoken samples using both the proposexveraged across all test listeners, and then over the different video
and baseline system (some examples can be downloaded frosamples), as well as the sample standard deviagioistandard er-
http://lwww.etro.vub.ac.be/research/DSSP/demo). ror of the mean$EM) and the 95% confidence interv@5%Cl).
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lip-synch accuracy speech quality
Baseline | Proposed | Baseline | Proposed
S1 2.45 4.10 1.86 3.35
S2 2.47 3.84 1.99 3.16
S3 3.14 3.61 2.54 3.66
S4 2.82 3.99 2.43 3.71
S5 3.05 3.77 2.52 3.49
S6 2.29 3.60 2.12 3.29
S7 2.19 4.10 2.35 3.88
S8 3.04 4.05 2.86 3.79
DMOS 2.68 3.88 2.33 3.54
S 0.85 0.38 0.51 0.39
SEM 0.13 0.06 0.08 0.06
95%CIl || 2.41...2.95| 3.76...4.00| 2.17...2.49| 3.41...3.66
A 12 121
d 181 2.64
RI(%) 448 51.9

Table 2: Major statistical analysis results for the listening test.

In addition are given the rawX) and standardized differences (un-
biased Cohen’sl effect size) in overall mean DMOS scores, and

[3] J.P. Bloom and G.D. Marshall, “Method and apparatus @ im pro-

cessing signals,” US Patent #4,591,928, May 27 1986.

[4] J.P.Bloom, G.W. McNally, and N.J. Rose, “A digital sigmabcessing

5

—

[6

—

(7]

8]

E]

also the relative improvement of the proposed system over the base-

line system RI). Since the distribution of the assigned scores wa
far from Gaussian, we used the Wilcoxon matched-pairs signe 10]
ranks test with a threshold significance lege 0.05 to prove the

statistical significance of the observed differences between the mean
DMOS scores of the baseline and proposed system for both features

studied. We remark that the computed p-values in both paired tesfs1]
were smaller than .0001: this is mainly explained from the ob-

servation that the listeners preferred the baseline system over the

proposed system in only.B% (lip-synch accuracy) and 3%7%

(speech quality) of the cases. For the sake of completeness,

report that no difference could be perceived in1286 and 1156%
of the cases, respectively.

5. CONCLUSION

From the results, we can conclude that, both for the samples thft4]

e

were processed with the proposed as with the baseline system,

audio-visual lip-synch errors could still be observed at some point
However, while the latter were on average perceived as in-between
“disturbing” and just “slightly disturbing”, the former were per-
ceived as “not disturbing or annoying”. With regard to the qual-

15]

ity of processed speech samples, similar conclusions can be drawn,

although the overall DMOS scores are somewhat smaller. Furthe16]

more, we can see that the non-zero differences in DMOS scores as

well as their variabilities are quite pronounced: this is chiefly ex-
plained from the difficulties that were experienced in aligning the[17]

database samples by means of the baseline system. For the major
part of the sample pairs, the timing structure discrepancies are quite

large due to their relative differences in speech rates and number
duration and nature of pauses used. It was observed that for su

pairs, the baseline system regularly produced unacceptable results,

which could not be further corrected, neither by selecting a different
alignment algorithm and/or setting, nor by manually placing corre{19]

sponding “synch points” in the 2 waveforms.

In summary, we can conclude that the proposed system has

demonstrated an overall relative improvement in DMOS score 0
44.8% (lip-synch accuracy) and 32B6 (speech quality) over the
baseline system when it is used for the temporal alignment of ut-

f20]

terances in which large structural timing differences occur, such as

those between spontaneous and dubbed speech.
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