ETRO VUB
About ETRO  |  News  |  Events  |  Vacancies  |  Contact  
Home Research Education Industry Publications About ETRO

ETRO Publications

Full Details

Journal Publication

Deep coupled-representation learning for sparse linear inverse problems with side information

This publication appears in: IEEE Signal Processing Letters

Authors: E. Tsiligianni and N. Deligiannis

Volume: 26

Issue: 12

Pages: 1768-1772

Publication Date: Dec. 2019


Abstract:

In linear inverse problems, the goal is to recover a target signal from undersampled, incomplete or noisy linear measurements. Typically, the recovery relies on complex numerical optimization methods recent approaches perform an unfolding of a numerical algorithm into a neural network form, resulting in a substantial reduction of the computational complexity. In this letter, we consider the recovery of a target signal with the aid of a correlated signal, the so-called side information (SI), and propose a deep unfolding model that incorporates SI. The proposed model is used to learn coupled representations of correlated signals from different modalities, enabling the recovery of multi-modal data at a low computational cost. As such, our work introduces the first deep unfolding method with SI, which actually comes from a different modality. We apply our model to reconstruct near-infrared images from undersampled measurements given RGB images as SI. Experimental results demonstrate the superior performance of the proposed framework against single-modal deep learning methods that do not use SI, multi-modal deep learning designs, and optimization algorithms.

Other Reference Styles
Current ETRO Authors

Dr. Evangelia Tsiligianni

+32 (0)02 629 168

etsiligi@etrovub.be

more info

Prof. Dr. Ir. Nikos Deligiannis

+32 (0)02 629 168

ndeligia@etrovub.be

more info

Other Publications

• Journal publications

IRIS • LAMI • AVSP

• Conference publications

IRIS • LAMI • AVSP

• Book publications

IRIS • LAMI • AVSP

• Reports

IRIS • LAMI • AVSP

• Laymen publications

IRIS • LAMI • AVSP

• PhD Theses

Search ETRO Publications

Author:

Keyword:  

Type:








- Contact person

- IRIS

- AVSP

- LAMI

- Contact person

- Thesis proposals

- ETRO Courses

- Contact person

- Spin-offs

- Know How

- Journals

- Conferences

- Books

- Vacancies

- News

- Events

- Press

Contact

ETRO Department

info@etro.vub.ac.be

Tel: +32 2 629 29 30

©2024 • Vrije Universiteit Brussel • ETRO Dept. • Pleinlaan 2 • 1050 Brussels • Tel: +32 2 629 2930 (secretariat) • Fax: +32 2 629 2883 • WebmasterDisclaimer