ETRO VUB
About ETRO  |  News  |  Events  |  Vacancies  |  Contact  
Home Research Education Industry Publications About ETRO

ETRO Publications

Full Details

Journal Publication

Enhanced Sparsity Prior Model for Low-rank Tensor Completion

This publication appears in: IEEE Transactions on Neural Networks and Learning Systems

Authors: J. Xue, Y. Zhao, W. Liao, J. C-W Chan and S. G. Kong

Pages: 1-15

Publication Date: Dec. 2019


Abstract:

Conventional tensor completion (TC) methods generally assume that the sparsity of tensor-valued data lies in the global subspace. The so-called global sparsity prior is measured by the tensor nuclear norm. Such assumption is not reliable in recovering low-rank (LR) tensor data, especially when considerable elements of data are missing. To mitigate this weakness, this article presents an enhanced sparsity prior model for LRTC using both local and global sparsity information in a latent LR tensor. In specific, we adopt a doubly weighted strategy for nuclear norm along each mode to characterize global sparsity prior of tensor. Different from traditional tensor-based local sparsity description, the proposed factor gradient sparsity prior in the Tucker decomposition model describes the underlying subspace local smoothness in real-world tensor objects, which simultaneously characterizes local piecewise structure over all dimensions. Moreover, there is no need to minimize the rank of a tensor for the proposed local sparsity prior. Extensive experiments on synthetic data, real-world hyperspectral images, and face modeling data demonstrate that the proposed model outperforms state-of-the-art techniques in terms of prediction capability and efficiency.

Other Reference Styles
Current ETRO Authors

Prof. Dr. Jonathan C-W Chan

+32 (0)02 629 128

jcheungw@etrovub.be

more info

Other Publications

• Journal publications

IRIS • LAMI • AVSP

• Conference publications

IRIS • LAMI • AVSP

• Book publications

IRIS • LAMI • AVSP

• Reports

IRIS • LAMI • AVSP

• Laymen publications

IRIS • LAMI • AVSP

• PhD Theses

Search ETRO Publications

Author:

Keyword:  

Type:








- Contact person

- IRIS

- AVSP

- LAMI

- Contact person

- Thesis proposals

- ETRO Courses

- Contact person

- Spin-offs

- Know How

- Journals

- Conferences

- Books

- Vacancies

- News

- Events

- Press

Contact

ETRO Department

info@etro.vub.ac.be

Tel: +32 2 629 29 30

©2024 • Vrije Universiteit Brussel • ETRO Dept. • Pleinlaan 2 • 1050 Brussels • Tel: +32 2 629 2930 (secretariat) • Fax: +32 2 629 2883 • WebmasterDisclaimer