ETRO VUB
About ETRO  |  News  |  Events  |  Vacancies  |  Contact  
Home Research Education Industry Publications About ETRO

ETRO Publications

Full Details

Journal Publication

Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism

This publication appears in: Remote Sensing

Authors: B. Fang, Y. Li, H. Zhang and J. C-W Chan

Volume: 11

Issue: 2

Publication Date: Jan. 2019


Abstract:

Hyperspectral images (HSIs) data that is typically presented in 3-D format offers an opportunity for 3-D networks to extract spectral and spatial features simultaneously. In this paper, we propose a novel end-to-end 3-D dense convolutional network with spectral-wise attention mechanism (MSDN-SA) for HSI classification. The proposed MSDN-SA exploits 3-D dilated convolutions to simultaneously capture the spectral and spatial features at different scales, and densely connects all 3-D feature maps with each other. In addition, a spectral-wise attention mechanism is introduced to enhance the distinguishability of spectral features, which improves the classification performance of the trained models. Experimental results on three HSI datasets demonstrate that our MSDN-SA achieves competitive performance for HSI classification.

Other Reference Styles
Current ETRO Authors

Prof. Dr. Jonathan C-W Chan

+32 (0)02 629 128

jcheungw@etrovub.be

more info

Other Publications

• Journal publications

IRIS • LAMI • AVSP

• Conference publications

IRIS • LAMI • AVSP

• Book publications

IRIS • LAMI • AVSP

• Reports

IRIS • LAMI • AVSP

• Laymen publications

IRIS • LAMI • AVSP

• PhD Theses

Search ETRO Publications

Author:

Keyword:  

Type:








- Contact person

- IRIS

- AVSP

- LAMI

- Contact person

- Thesis proposals

- ETRO Courses

- Contact person

- Spin-offs

- Know How

- Journals

- Conferences

- Books

- Vacancies

- News

- Events

- Press

Contact

ETRO Department

info@etro.vub.ac.be

Tel: +32 2 629 29 30

©2024 • Vrije Universiteit Brussel • ETRO Dept. • Pleinlaan 2 • 1050 Brussels • Tel: +32 2 629 2930 (secretariat) • Fax: +32 2 629 2883 • WebmasterDisclaimer