ETRO VUB
About ETRO  |  News  |  Events  |  Vacancies  |  Contact  
Home Research Education Industry Publications About ETRO

ETRO Publications

Full Details

Journal Publication

Multi-Agent Thompson Sampling for Bandit Applications with Sparse Neighbourhood Structures

This publication appears in: Scientific Reports - Nature

Authors: T. Verstraeten, E. Bargiacchi, P. Libin, J. Helsen, D. M Roijers and A. Nowé

Volume: 10

Issue: 1

Number of Pages: 14

Publication Date: Apr. 2020


Abstract:

Multi-agent coordination is prevalent in many real-world applications. However, such coordination is challenging due to its combinatorial nature. An important observation in this regard is that agents in the real world often only directly affect a limited set of neighbouring agents. Leveraging such loose couplings among agents is key to making coordination in multi-agent systems feasible. In this work, we focus on learning to coordinate. Specifically, we consider the multi-agent multi-armed bandit framework, in which fully cooperative loosely-coupled agents must learn to coordinate their decisions to optimize a common objective. We propose multi-agent Thompson sampling (MATS), a new Bayesian exploration-exploitation algorithm that leverages loose couplings. We provide a regret bound that is sublinear in time and low-order polynomial in the highest number of actions of a single agent for sparse coordination graphs. Additionally, we empirically show that MATS outperforms the state-of-the-art algorithm, MAUCE, on two synthetic benchmarks, and a novel benchmark with Poisson distributions. An example of a loosely-coupled multi-agent system is a wind farm. Coordination within the wind farm is necessary to maximize power production. As upstream wind turbines only affect nearby downstream turbines, we can use MATS to efficiently learn the optimal control mechanism for the farm. To demonstrate the benefits of our method toward applications we apply MATS to a realistic wind farm control task. In this task, wind turbines must coordinate their alignments with respect to the incoming wind vector in order to optimize power production. Our results show that MATS improves significantly upon state-of-the-art coordination methods in terms of performance, demonstrating the value of using MATS in practical applications with sparse neighbourhood structures.

Other Reference Styles
Other Publications

• Journal publications

IRIS • LAMI • AVSP

• Conference publications

IRIS • LAMI • AVSP

• Book publications

IRIS • LAMI • AVSP

• Reports

IRIS • LAMI • AVSP

• Laymen publications

IRIS • LAMI • AVSP

• PhD Theses

Search ETRO Publications

Author:

Keyword:  

Type:








- Contact person

- IRIS

- AVSP

- LAMI

- Contact person

- Thesis proposals

- ETRO Courses

- Contact person

- Spin-offs

- Know How

- Journals

- Conferences

- Books

- Vacancies

- News

- Events

- Press

Contact

ETRO Department

info@etro.vub.ac.be

Tel: +32 2 629 29 30

©2024 • Vrije Universiteit Brussel • ETRO Dept. • Pleinlaan 2 • 1050 Brussels • Tel: +32 2 629 2930 (secretariat) • Fax: +32 2 629 2883 • WebmasterDisclaimer