ETRO VUB
About ETRO  |  News  |  Events  |  Vacancies  |  Contact  
Home Research Education Industry Publications About ETRO

ETRO Publications

Full Details

Journal Publication

A Locally Adaptive System for the Fusion of Objective Quality Measures

This publication appears in: IEEE Transactions on Image Processing

Authors: A. Barri, A. Dooms, P. Schelkens and B. Jansen

Volume: 23

Pages: 2446-2458

Publication Date: Apr. 2014


Abstract:

Objective measures to automatically predict the perceptual quality of images or videos can reduce the time and cost requirements of end-to-end quality monitoring. For reliable quality predictions, these objective quality measures need to respond consistently with the behavior of the human visual system (HVS). In practice, many important HVS mechanisms are too complex to be modeled directly. Instead, they can be mimicked by machine learning systems, trained on subjective quality assessment databases, and applied on predefined objective quality measures for specific content or distortion classes. On the downside, machine learning systems are often difficult to interpret and may even contradict the input objective quality measures, leading to unreliable quality predictions. To address this problem, we developed an interpretable machine learning system for objective quality assessment, namely the locally adaptive fusion (LAF). This paper describes the LAF system and compares its performance with traditional machine learning. As it turns out, the LAF system is more consistent with the input measures and can better handle heteroscedastic training data.

External Link.

Other Reference Styles
Current ETRO Authors

Prof. Dr. Ir. Peter Schelkens

+32 (0)02 629 168

pschelke@etrovub.be

more info

Prof. Dr. Bart Jansen

+32 (0)02 629 103

bjansen@etrovub.be

more info

Other Publications

• Journal publications

IRIS • LAMI • AVSP

• Conference publications

IRIS • LAMI • AVSP

• Book publications

IRIS • LAMI • AVSP

• Reports

IRIS • LAMI • AVSP

• Laymen publications

IRIS • LAMI • AVSP

• PhD Theses

Search ETRO Publications

Author:

Keyword:  

Type:








- Contact person

- IRIS

- AVSP

- LAMI

- Contact person

- Thesis proposals

- ETRO Courses

- Contact person

- Spin-offs

- Know How

- Journals

- Conferences

- Books

- Vacancies

- News

- Events

- Press

Contact

ETRO Department

info@etro.vub.ac.be

Tel: +32 2 629 29 30

©2024 • Vrije Universiteit Brussel • ETRO Dept. • Pleinlaan 2 • 1050 Brussels • Tel: +32 2 629 2930 (secretariat) • Fax: +32 2 629 2883 • WebmasterDisclaimer