|
A SEGMENTATION FRAMEWORK FOR PHASE CONTRAST AND FLUORESCENCE MICROSCOPY IMAGES This publication appears in: International Journal of Pattern Recognition and Artificial Intelligence Authors: M. Perez Gonzalez, R. Willaert and H. Sahli Volume: 28 Pages: 1-18 Publication Date: Sep. 2014
Abstract: The noninvasive imaging of unstained living cells is a widely used technique in biotechnology for determining biological and biochemical role of proteins, since it allows studying living specimens without altering them. Usually, fluorescence and contrast (or transmission) images are both used complementarily, as their combination allows possible better outcomes. However, segmentation of contrast images is particularly difficult due to the presence of defocused scans, lighting/shade-off artifacts and cells overlapping. In this work, we investigate the optical properties intervening during the image formation process, and propose different segmentation strategies that can benefit from these properties. The proposed scheme (i) combines the estimated phase and the fluorescence information in order to obtain initial markers for a latter segmentation stage and (ii) use the shear oriented polar snakes, an active contour model that implicitly involves phase information on its energy functional. The obtained contour can be used as region of interest estimation, as data for a latter shape-fitting process, or as smart markers for a more detailed segmentation process (i.e. watershed). Experimental results provide a comparison of the different segmentation schemes, and confirm the suitability of the proposed strategy and model for cell images segmentation. External Link.
|
|