ETRO VUB
About ETRO  |  News  |  Events  |  Vacancies  |  Contact  
Home Research Education Industry Publications About ETRO

ETRO Publications

Full Details

Journal Publication

Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping

This publication appears in: ISPRS Journal of Photogrammetry and Remote Sensing

Authors: L. Demarchi, F. Canters, C. Cariou, G. Licciardi and J. C-W Chan

Volume: 87

Pages: 166-179

Publication Date: Jan. 2014


Abstract:

Despite the high richness of information content provided by airborne hyperspectral data, detailed urban land-cover mapping is still a challenging task. An important topic in hyperspectral remote sensing is the issue of high dimensionality, which is commonly addressed by dimensionality reduction techniques. While many studies focus on methodological developments in data reduction, less attention is paid to the assessment of the proposed methods in detailed urban hyperspectral land-cover mapping, using state-of-the-art image classification approaches. In this study we evaluate the potential of two unsupervised data reduction techniques, the Autoassociative Neural Network (AANN) and the BandClust method - the first a transformation based approach, the second a feature-selection based approach - for mapping of urban land cover at a high level of thematic detail, using an APEX 288-band hyperspectral dataset. Both methods were tested in combination with four state-of-the-art machine learning classifiers: Random Forest (RF), AdaBoost (ADB), the multiple layer perceptron (MLP), and support vector machines (SVM). When used in combination with a strong learner (MLP, SVM) BandClust produces classification accuracies similar to or higher than obtained with the full dataset, demonstrating the method's capability of preserving critical spectral information, required for the classifier to successfully distinguish between the 22 urban land-cover classes defined in this study. In the AANN data reduction process, on the other hand, important spectral information seems to be compromised or lost, resulting in lower accuracies for three of the four classifiers tested. Detailed analysis of accuracies at class level confirms the superiority of the SVM/Bandclust combination for accurate urban land-cover mapping using a reduced hyperspectral dataset. This study also demonstrates the potential of the new APEX sensor data for detailed mapping of land cover in spatially and spectrally complex urban areas.

Other Reference Styles
Current ETRO Authors

Prof. Dr. Jonathan C-W Chan

+32 (0)02 629 128

jcheungw@etrovub.be

more info

Other Publications

• Journal publications

IRIS • LAMI • AVSP

• Conference publications

IRIS • LAMI • AVSP

• Book publications

IRIS • LAMI • AVSP

• Reports

IRIS • LAMI • AVSP

• Laymen publications

IRIS • LAMI • AVSP

• PhD Theses

Search ETRO Publications

Author:

Keyword:  

Type:








- Contact person

- IRIS

- AVSP

- LAMI

- Contact person

- Thesis proposals

- ETRO Courses

- Contact person

- Spin-offs

- Know How

- Journals

- Conferences

- Books

- Vacancies

- News

- Events

- Press

Contact

ETRO Department

info@etro.vub.ac.be

Tel: +32 2 629 29 30

©2024 • Vrije Universiteit Brussel • ETRO Dept. • Pleinlaan 2 • 1050 Brussels • Tel: +32 2 629 2930 (secretariat) • Fax: +32 2 629 2883 • WebmasterDisclaimer